Dilution Ventilation: Concentration Buildup

Category:
Ventilation

Units
- \(\ln \) = the natural logarithm
- \(G \) = the generation rate of a gas or vapor (cfm)
- \(Q' \) = the effective flow rate of dilution air (cfm)
- \(V_r \) = the room volume (ft³)
- \(C_{g1}, C_{g2} \) = the initial/final airborne concentrations, respectively, of a contaminant in the decimal equivalent of parts per million (PPM/10⁶)
- \(t_{1, 2} \) = the initial and final times, respectively, for \(C_{g1}, C_{g2} \) (min)

\[
\ln \left(\frac{G - Q' C_{g2}}{G - Q' C_{g1}} \right) = \frac{Q(t_2 - t_1)}{V_r}
\]

Reference:

Theory and Application
Dilution ventilation is a method of controlling the level of airborne contaminants to some acceptable room concentration by introducing fresh, uncontaminated outside air to the space to dilute and maintain a desired room concentration. This method of control must be limited to low toxicity contaminants that are generated at a relatively uniform rate and sufficiently away from a worker’s breathing zone.

This equation describes the relationship between the concentration buildup of a contaminant that is still actively being generated at any time, \(t \), for a given room volume, with/without an initial room concentration, and effective volumetric dilution flow rate, \(Q' \). The concentration after a certain time interval (\(\Delta t \) which equals \(t_{2} - t_{1} \)) can be calculated by solving for \(C_{g2} \). The effective ventilation flow rate does not incorporate a safety factor to account for incomplete mixing of the contaminant with room air. Safety factors, based on professional judgement, generally range from 1 to 10 times the amount of dilution air calculated to account for incomplete room mixing.

This equation has additional discussion in

Example
What is the final room concentration of toluene after 10 minutes if the vapor is generated at a rate of 5 cfm in a room 20 feet wide, 40 feet long and 12 feet high which measured an initial concentration of 50 ppm while being ventilated with clean dilution air at a flow of 2,500 cfm?

\[
\ln \left(\frac{G - Q' C_{g2}}{G - Q' C_{g1}} \right) = \frac{Q(t_2 - t_1)}{V_r}
\]

\[
\ln \left(\frac{5\text{cfm}-2,500\text{cfm}(C_{g2})}{5\text{cfm}-2,500\text{cfm}(0.00005)} \right) = \frac{2,500\text{cfm}(10\text{min})}{9,600\text{ft}^3}
\]

\[
\ln \left(\frac{5\text{cfm}-2,500\text{cfm}(0.001856)}{4.88\text{cfm}} \right) = 2.60
\]

\[e^{2.60} = 0.0743 \]
\[C_{g2} = 0.001856 \times 10^6 \text{(convert to ppm)} \]
\[C_{g2} = 1,856 \text{ppm} \]